
R Workshop Series at NWREC
	

R Workshop 5: Automation

	

1

R Workshop 5: Automation
Teal Potter

11/12/2021

Table of Contents
Setup	..	1	

Functions	...	2	

Example	function	1	 	..	2	

Example	function	2	 	..	3	

Example	function	3	 	..	3	
Tips	for	building	functions	...	4	

For	loops	...	4	

Example	For	loop	1	 	..	5	

Example	For	loop	2	 	..	5	
Tips	for	building	for	loops	..	6	

Example	For	loop	3	 	..	9	
	

By ‘automation’, I mean using a method that allows you perform a repetative task more efficiently. Functions and
for loops are two advanced strategies that can help you save time and script space by avoiding copy/pasting code
over and over and changing the variables each time. Functions and for loops can be used for the same uses so I
recommend practicing the option that feels more intuitive to you for a while. If you happen to be operating on
very large datasets or have complex manuevers, note that functions take much less time to execute. You won’t
notice much difference for datasets with only a couple hundred samples.

Setup
library(car)	
library(ggplot2)	

R Workshop Series at NWREC
	

R Workshop 5: Automation

	

2

Functions
To Build a function you’ll use the function() function and curly brackets to enclose the code you want use to
develop what the function does with the arguments you provide it. Here is some pseudo code to show you what
is included in a function.

function_name <- function(argument){ code that manipulates arguments in some way }

The name you assign in the first row of code will become the name of your function. One or more arguments can
be created as the arguments of your function.

Using your function after you make it is like using any other type of function:

function_name(dataset)

Example function 1
Here is a function with one argument, x. This function takes a vector (x) and uses base R functions to calculate
standard error.

se <- function(x){ # function with 1 argument, x. Function is named se.	
 sd(x)/sqrt(length(x)) # standard deviation of x divided by n	
}	

Now you can test/use the se function:

vector1 <- c(2,6,5,6) # here is a vector we can test the function with	
se(vector1) # to test the function, place the vector in the parantheses like any
other function	

## [1] 0.9464847	

se(c(2,6,5,6)) # altertnatively, we can specify the vector in the function
directly	

## [1] 0.9464847	

But what happens if our vector contains an NA?

se(c(2,6,5,6,NA)) 	

## [1] NA	

It returns NA. Let’s make a new and improved function that can handle data with NAs. The sd() function, along
with mean(), median(), and other functions can take an optional argument to state what to do with NAs. We can
add na.rm = TRUE here and na.omit(x) which operates directly on the x vector to remove the NA from both
parts of the calculation.

Teal Potter

Teal Potter

Teal Potter

Teal Potter

R Workshop Series at NWREC
	

R Workshop 5: Automation

	

3

SE <- function(x) {	
 sd(x, na.rm = TRUE)/sqrt(length(na.omit(x)))	
}	

Now when we test the SE() function it returns the same standard error calculation having ignored the NA in the
data.

SE(c(2,6,5,6))	

## [1] 0.9464847	

SE(c(2,6,5,6,NA))	

## [1] 0.9464847	

Example function 2
Here is another function with a few more calculations made. This function calculates the number of samples, the
mean, and standard error (using the function made above). Again a numerical vector must be provided as the
function’s argument.

sumry <- function(num_col) {	
 Length <- length(num_col) # calculates sample size	
 Mean <- mean(num_col) # calculates mean 	
 SE <- SE(num_col) # calculates standard error	
 data.frame(Length,Mean, SE) # returns all 3 calculations	
 }	
	
sumry(Soils$N)	

## Length Mean SE	
## 1 48 0.1019375 0.009693504	

Example function 3
In this final example, there are two arguments. x and y both need to be numerical vectors in order for this
function to assess the linear relationship between these two variables using linear regression. The main reason I
consider this more complex than the previous is because I’ve added several clean up steps to make the output
clean to look at. This function returns the main test statistics from the model in a cleaner version than you get as
a default when you use summary(lm(…)).

lm_coef <- function(x, y) {	
 mod <- summary(lm(y ~ x)) # run linear model with x & y	
 mod.df <- as.data.frame(t(data.frame(coefficients(mod)[2,]))) # keep coefficients
row 2	
 mod.df$R2 <- mod$r.squared # adding R2 since it's not in the coef table	
 names(mod.df)[4] <- "P" # change 4th column name to P	

R Workshop Series at NWREC
	

R Workshop 5: Automation

	

4

 clean <- round(mod.df, 3) # rounding all values to 3 places	
 clean$P <- ifelse(clean$P == 0, yes = "<0.01", no = clean$P) # if P rounds to 0 	
 print(clean)	
}	
	
lm_coef(Soils$N, Soils$pH)	

## Estimate Std. Error t value P R2	
## coefficients.mod..2... 6.369 1.137 5.599 <0.01 0.405	

Tips for building functions
You will probably find it difficult to write your code inside the function because your argument doesn’t represet
real data at this point. One way to check that your lines of code work as you go is to assign data to your
arguments. For example:

x <- c(1,2,3,4,5)	
y <- c(1,2,3,4,6)	

now you should be able to run the line of code that contains the model and the follow lines.

summary(lm(y ~ x))	

## 	
## Call:	
## lm(formula = y ~ x)	
## 	
## Residuals:	
## 1 2 3 4 5 	
## 2.000e-01 1.249e-16 -2.000e-01 -4.000e-01 4.000e-01 	
## 	
## Coefficients:	
## Estimate Std. Error t value Pr(>|t|) 	
## (Intercept) -0.4000 0.3830 -1.044 0.3730 	
## x 1.2000 0.1155 10.392 0.0019 **	
## ---	
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1	
## 	
## Residual standard error: 0.3651 on 3 degrees of freedom	
## Multiple R-squared: 0.973, Adjusted R-squared: 0.964 	
## F-statistic: 108 on 1 and 3 DF, p-value: 0.001901	

For loops
For loops iterate (or cycle or loop) through a data object in a way that you specify so that you can perform a
process and/or calculation on every group that meets your criteria. A common application is to append new
information to a new table every time the for loop completes one pass through and makes the calculations.

R Workshop Series at NWREC
	

R Workshop 5: Automation

	

5

The syntax set up a for loop can be be auto-populatined if you type the word for and then hit Tab on your
keyboard.

Example For loop 1
Here is a super simple example to start. This for loop adds 1 to each element in the vector. i is a place holder
variable that represents different data each loop through the dataset. You can use any variable you like but it is
common practice to use i and sometimes j and k.

for (i in 1:10) { # for each variable i from the first loop through the nth loop
through data	
 counter = i + 1 # code that manipulates i	
 print(counter) # the output	
}	

## [1] 2	
## [1] 3	
## [1] 4	
## [1] 5	
## [1] 6	
## [1] 7	
## [1] 8	
## [1] 9	
## [1] 10	
## [1] 11	

Example For loop 2
What if we want to know how many groups (aka levels) there are in each column containing factor data in the
Soils dataset.

First we can make a new data frame that only contains columns with factor data.

factor_cols = dplyr::select_if(Soils, is.factor)	

This is the way you might be tempted to perform this task, which I’m just showing to contrast with the for loop
option below.

names(factor_cols)	

## [1] "Group" "Contour" "Depth" "Gp" "Block"	

length(levels(factor_cols$Group))	

## [1] 12	

length(levels(factor_cols$Contour))	

Teal Potter

Teal Potter

Teal Potter

R Workshop Series at NWREC
	

R Workshop 5: Automation

	

6

## [1] 3	

length(levels(factor_cols$Depth))	

## [1] 4	

length(levels(factor_cols$Gp))	

## [1] 12	

length(levels(factor_cols$Block))	

## [1] 4	

You can see how this could get annoying quickly if you had a lot of groups.

Alternatively, we can write a for loop to perform this code on all the columns of factor_cols.

for (j in 1:length(factor_cols)) { # specify # of columns to cycle through	
 factor_cols.t = factor_cols[,j] # for each loop, operate on the jth column 	
 col = colnames(factor_cols)[j] # save the jth column name	
 len = length(levels(factor_cols.t)) # count the # of levels in jth column & save	
 print(paste(col,'=',len)) # output: column names & # of levels in column 	
}	

## [1] "Group = 12"	
## [1] "Contour = 3"	
## [1] "Depth = 4"	
## [1] "Gp = 12"	
## [1] "Block = 4"	

Tips for building for loops
Let’s break that example down a bit more to show how you can test parts of the whole for loop. First you can
check that you’ve included the correct number of iterations to cycle/loop through in the first line by selecting and
running this code independently from the for loop

1:length(factor_cols) # 5 columns	

## [1] 1 2 3 4 5	

Next, to test whether you’ve specified a column to operate on you can set the variable j to a number and see if
your subsetting code works with that single instance of j

j = 1	
	
factor_cols[,j] 	

## [1] 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 	
## [26] 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12	
## Levels: 1 2 3 4 5 6 7 8 9 10 11 12	

Teal Potter

Teal Potter

Teal Potter

Teal Potter

Teal Potter

Teal Potter

Teal Potter

Teal Potter

R Workshop Series at NWREC
	

R Workshop 5: Automation

	

7

We know this should be the first column in factor_cols, so let’s compare

factor_cols[1]	

## Group	
## 1 1	
## 2 1	
## 3 1	
## 4 1	
## 5 2	
## 6 2	
## 7 2	
## 8 2	
## 9 3	
## 10 3	
## 11 3	
## 12 3	
## 13 4	
## 14 4	
## 15 4	
## 16 4	
## 17 5	
## 18 5	
## 19 5	
## 20 5	
## 21 6	
## 22 6	
## 23 6	
## 24 6	
## 25 7	
## 26 7	
## 27 7	
## 28 7	
## 29 8	
## 30 8	
## 31 8	
## 32 8	
## 33 9	
## 34 9	
## 35 9	
## 36 9	
## 37 10	
## 38 10	
## 39 10	
## 40 10	
## 41 11	
## 42 11	
## 43 11	

R Workshop Series at NWREC
	

R Workshop 5: Automation

	

8

## 44 11	
## 45 12	
## 46 12	
## 47 12	
## 48 12	

Looks good. Let’s try 1 more column by changing j to represent 2nd column. We’ll just check the top of the
column this time using head().

j = 2	
head(factor_cols[,j])	

## [1] Top Top Top Top Top Top	
## Levels: Depression Slope Top	

head(factor_cols[2])	

## Contour	
## 1 Top	
## 2 Top	
## 3 Top	
## 4 Top	
## 5 Top	
## 6 Top	

That worked too. Looks like we’ve correctly showed the for loop how to recognize each column one at time. Now
that we have j set equal to 2 we should be able to check the code in the remaining lines before running the
whole for loop.

colnames(factor_cols)[j] # save the jth column name	

## [1] "Contour"	

length(levels(factor_cols.t)) # count the number of levels (groups) in the jth
column & save	

## [1] 4	

Now those lines worked so let’s save them to the temporary variable names so we can test the output code
where we paste them together.

col = colnames(factor_cols)[j] # save the jth column name	
len = length(levels(factor_cols.t)) # count the number of levels (groups) in the
jth column & save	
	
print(paste(col,'=',len)) #paste column name and # of levels in that column
together	

## [1] "Contour = 4"	

Once you’ve checked and gotten all the parts to work like this, you can be pretty sure that your for loop will run
correctly.

Teal Potter

Teal Potter

Teal Potter

Teal Potter

Teal Potter

Teal Potter

R Workshop Series at NWREC
	

R Workshop 5: Automation

	

9

Example For loop 3
A common reason to build a for loop is if you need to run a statistical test on combinations of variables. Instead
of typing out the functions and specifying the set of variables each time you run a test (literally copy/pasting code
and just changing a few things), you can loop through your combinations to run a bunch of test and report the
statistics of your choice in a new table.

Here is a visual for the example for loop below. Let’s say you are interested in testing the relationship between N
and pH but you would like to see if the relationship changes with depth.

ggplot(Soils, aes(x = N, y= pH, color = Depth))+	
 geom_point()+	
 geom_smooth(method = 'lm')	

Here it looks like the slope is similar within each depth but let’s test it.

data_frame_to_fill = data.frame() #reset each time you run for loop	
	
depths = unique(Soils$Depth) # creating a new variable to specify the # of cycles
through the data 	
	
for (i in 1:length(depths)) {	
 Soils.temp = Soils[Soils$Depth == depths[i],] # subset data to 1 depth per cycle	
 mod <- summary(lm(pH ~ N, data = Soils.temp)) # run model using subsetted data 	
 mod.df = data.frame(coefficients(mod)) # save stats in a temporary data 	
 mod.df$depth <- depths[i] # save depth category name to the temporary data frame	
 data_frame_to_fill = rbind(data_frame_to_fill, mod.df) # append new rows (data
frame) to full data frame that gets added to with each loop through the data	
}	
	

R Workshop Series at NWREC
	

R Workshop 5: Automation

	

10

Finally, run the name of the data frame to see what the for loop created.

data_frame_to_fill 	

## Estimate Std..Error t.value Pr...t.. depth	
## (Intercept) 5.783998 0.2626384 22.0226674 8.351646e-10 0-10	
## N -1.956127 1.2841444 -1.5232924 1.586628e-01 0-10	
## (Intercept)1 5.193473 0.7120423 7.2937708 2.620330e-05 10-30	
## N1 -1.900987 6.9178972 -0.2747927 7.890692e-01 10-30	
## (Intercept)2 4.425775 0.3292346 13.4426169 9.977327e-08 30-60	
## N2 -2.318866 4.9382566 -0.4695717 6.487327e-01 30-60	
## (Intercept)3 4.174329 0.2354665 17.7279119 6.952866e-09 60-90	
## N3 -3.762322 4.8458033 -0.7764083 4.554796e-01 60-90	

It’s not a pretty data frame but it’s simple this way. We can fairly easily add code to round numbers, change
column names, and omit the uneeded intercept rows as I’ve shown in the Example function 3 section. This detail
can be added to the for loop or performed on the final data frame after it’s created.

